Description
Input
Output
Sample Input
Sample Output
1 #include2 #include 3 const int MAXN=100010; 4 int main(){ 5 __int64 N,ans; 6 int T; 7 scanf("%d",&T); 8 while(T--){ 9 ans=0;10 scanf("%I64d",&N);11 N++;12 int flot=0;13 for(int i=2;i<=sqrt(N);i++)if(N%i==0)ans++;14 printf("%I64d\n",ans);15 }16 return 0;17 }
Description
Input
Output
Sample Input
Sample Output
1 #include2 #include 3 #include 4 #include 5 using namespace std; 6 const int MAXN=30010; 7 vector vec; 8 int main(){ 9 int N,x;10 while(~scanf("%d",&N)){11 int top=0;12 vec.clear();13 for(int i=0;i
Description
Input
Output
Sample Input
Sample Output
1 #include2 #include 3 int main(){ 4 int N,a[150],b[150]; 5 while(~scanf("%d",&N)){ 6 for(int i=0;i<=N;i++)a[i]=1,b[i]=0; 7 for(int i=2;i<=N;i++){ 8 for(int j=0;j<=N;j++){ 9 b[j]+=a[j];10 for(int k=i;j+k<=N;k+=i){11 b[j+k]+=a[j];12 }13 }14 for(int j=0;j<=N;j++)15 a[j]=b[j],b[j]=0;16 }17 printf("%d\n",a[N]);18 }19 return 0;20 }
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and DiOutput
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 61 42 63 122 7
Sample Output
23 代码:
1 #include2 #include 3 const int MAXN=200000; 4 int bag[MAXN]; 5 #define MAX(x,y)(x>y?x:y) 6 struct Node{ 7 int w,v; 8 }; 9 Node dt[5000];10 int main(){11 int N,M;12 while(~scanf("%d%d",&N,&M)){13 memset(bag,0,sizeof(bag));14 for(int i=0;i =dt[i].w;j--){17 bag[j]=MAX(bag[j],bag[j-dt[i].w]+dt[i].v);18 }19 }20 printf("%d\n",bag[M]);21 }22 return 0;23 }